锂离子电池电极制备技术 ,如何改写行业格局?

电动汽车和新能源领域的快速发展对电池的能量密度、寿命、安全及成本提出了更高的要求,开发高比能、长寿命、高安全和低成本的锂离子电池迫在眉睫。通常用于提高电池能量密度(降低成本)的两种策略为:
(1)开发具有更高比容量的新型电极材料,如高容量硅基负极材料和正极材料;
(2)构筑具有更高活性材料占比和优良电化学性能的先进电极结构。

锂离子电池电极制备技术

在电极结构构筑方面,研究者主要从以下3个方面开展了研究:
(1)优化多孔电极孔隙率及其孔径分布,即不改变活性物质占比的同时提高中孔和大孔的体积,可有效改善电解液浸润性,提高活性物质利用率,降低电极内部不均匀极化,同时对于具有较大体积效应的高容量电极如硅基电极,均匀的孔径分布状态有利于缓解电极内部应力,提高电极稳定性,进而提升电池循环性能;
(2)通过优化电极配方、孔隙结构、组分形貌、制备技术等方法降低电极曲折度可以改善多孔电极中的离子传输速率。挤压烧结法、电极浆料定向冷冻法和磁场控制涂布法等新型电极制备技术的发展加速了高负载厚电极的构筑和应用。结合多孔电极曲折度设计优化工作的需求,电极曲折度测试评价方法的研究同样引起了学者的关注;
(3)电极纵向孔隙梯度设计和组分梯度设计。相对于均匀电极,梯度电极设计不仅减低了电极内部的不均匀极化,同时缓解了电极内部应力,电极的循环稳定性得到显著改善。梯度电极的设计与构筑加快了硅基材料在高比能电池中的应用。

多孔电极是电池内部电极过程发生的主要场所,电极结构参数是决定电极及电池性能的关键因素。多孔电极结构设计优化和制备技术研究是未来的研究重点,其包括:
(1)结合模型仿真和现代测量技术建立多孔电极结构特征参数的表征及验证方法,实现多孔电极结构特征的清晰描述;
(2)深入研究多孔电极结构特征和电极及电池性能的内在关联,明确多孔电极结构及性能的构效关系,为多孔电极设计优化提供技术方向;
(3)研究多孔电极结构特征在循环使用过程中的演变规律,探讨电池结构失效模式及改善策略;
(4)开发多孔结构可控电极的新型制备技术。目前新型电极制备技术多数处于实验室研究阶段,加快实验研究,推动新型制备技术的规模化应用是未来结构可控电极制备技术发展的重点方向。

一种配置有4个固定超声波喷嘴或一个往复式基板的输送系统,用于大规模生产。UAM6000XL是一种生产规模的涂层系统,具有在GDL或燃料电池膜上进行催化剂涂覆的能力,涂覆面积可达1.2米*1.2米(涂覆面积可定制)。采用国家专利超声波喷涂技术,用于制备均匀致密的薄膜涂层以及应用于喷雾热解领域。并可配备单套或多套喷头系统。可定制化的方案灵活应用于不同行业、不同领域。被广泛应用于能源行业、纳米行业、微电子行业、半导体行业、玻璃镀膜行业等。

UAM6000XL 大面积超声波喷涂设备

  • 适用于大批量生产
  • 大面积、全自动、可编程的独立系统
  • 原料利用率可达95%
  • 涂层均一且稳定,均匀度±5%
  • 有效喷涂面积:1200mmX 1200mm

关于驰飞

驰飞的解决方案是环保、高效和高度可靠的,可大幅减少过量喷涂,节省原材料,并提高均一性、转移效率、均匀性和减少排放。为企业提供围绕功能涂层的全套解决方案及长期技术支持,保证客户涂层稳定量产;针对特殊器械涂层需求,提供涂层定制研发服务;提供各类涂层代工服务。

杭州驰飞是超声镀膜系统开发商和制造商,产品主要应用于燃料电池质子交换膜喷涂、薄膜太阳能电池、钙钛矿、微电子、半导体、 纳米新材料、玻璃镀膜、 生物医疗、纺织品等领域。

英文网站:CHEERSONIC ULTRASONIC COATING SOLUTION