导热绝缘PI膜(聚酰亚胺)及应用前景
在电子器件高度薄型化、多功能化和集成化的时代,会不可避免地导致复合材料内部的热量积累,严重影响设备的稳定运行和使用寿命,如何实现电介质材料快速且高效的导热散热已成为影响电子设备发展的关键问题。传统聚酰亚胺本征导热系数较低,限制了在电气设备、智能电网等领域中的应用,发展新型高导热聚酰亚胺电介质薄膜材料成为国内外研究重点。本文介绍了复合材料的热传导机制,概述了近年来导热聚酰亚胺薄膜的研究进展与发展现状,重点讨论了导热填料、界面相容、成型工艺对材料导热系数的影响,最后结合导热聚酰亚胺复合电介质材料未来发展的需要,对研究中存在的一些关键科学技术问题进行了总结与展望。
高分子材料以其优异的电绝缘性、耐化学腐蚀性、质轻、密度小等特性被广泛应用于电子电气、通信、军事装备制造、航空航天等领域。聚酰亚胺(PI)是由含酰亚胺基链节[-C(O)-N(R)-C(O)-]构建的芳杂环高分子化合物,具有优异的电绝缘性、耐辐照性能、机械性能等特性,被誉为“解决问题的能手”。PI 作为结构或功能材料具有巨大的发展前景,特别是 PI 薄膜材料,有着“黄金薄膜”的美称,最早被开发和应用的一种聚酰亚胺产品,在印制电路板、电子封装、层间介质、显示面板等领域中被广泛应用
现代电子设备、以芯片为代表的工业器件、混合动力电动汽车以及发光二极管的高度集成和高功率导致产品的尺寸逐渐减小,由此产生的热量成倍增加的问题越来越突出,严重影响产品的操作性能及使用寿命,热管理系统的高效导热散热越来越受到人们的广泛关注。
相关研究表明:电子设备的温度每升 2℃,可靠性降低 10%;温度升高 8~12℃,使用寿命减半,材料的导热性能已成为影响设备正常工作的一个重要参数。聚合物材料在解决导热散热问题方面显示出了良好的潜力,但聚酰亚胺材料的本征导热系数较低,通常在 0.2 W/(m·K)以下,远低于金属、碳、陶瓷等材料,极大限制了 PI 薄膜在高新技术领域的应用。为了保证设备的正常运行和使用安全性,寻求适当方法来提高聚酰亚胺材料的热导率具有重要意义。为了解决聚酰亚胺材料的导热散热问题,研究人员主要从两个方面开展工作。一是对 PI 基体本体改性,从分子结构设计角度出发,基于 PI 的 1~3 级结构设计及构筑有序结构;通过力学拉伸、剪切、离心、纺丝等方式诱导有序结构的形成;基于分子间相互作用力,特别是发挥氢键的优势,在分子链间形成穿插和缠结的结构以及构建侧基之间的氢键作用。提高聚酰亚胺本征热导率的策略即改变基体链结构的形态,使蜷曲的分子链呈现舒展的状态,提高链段聚集的有序性,来创造声子传递的途径,以此提高基体的本征导热系数。
二是以 PI 为基体,在基体中添加高导热填料也是改善热导率的有效策略,目前,国内外高导热聚酰亚胺复合材料的理论研究和工业化生产主要集中在填充型 PI 复合材料。导热填料在 PI基体中相互连接,形成有序的导热路径,减少声子传递过程中产生的散射,实现热量的快速传输。
复合材料的热导率由 PI 基体的结构和填料的性能、填料在基体中的排列以及基体与填料的相互作用等因素共同决定,同时还要考虑导热通路的构筑及制备工艺等材料导热性能的影响。
一种配置有4个固定超声波喷嘴或一个往复式基板的输送系统,用于大规模生产。UAM6000XL是一种生产规模的涂层系统,具有在GDL或燃料电池膜上进行催化剂涂覆的能力,涂覆面积可达1.2米*1.2米(涂覆面积可定制)。采用国家专利超声波喷涂技术,用于制备均匀致密的薄膜涂层以及应用于喷雾热解领域。并可配备单套或多套喷头系统。可定制化的方案灵活应用于不同行业、不同领域。被广泛应用于能源行业、纳米行业、微电子行业、半导体行业、玻璃镀膜行业等。
- 适用于大批量生产
- 大面积、全自动、可编程的独立系统
- 原料利用率可达95%
- 涂层均一且稳定,均匀度±5%
- 有效喷涂面积:1200mmX 1200mm
关于驰飞
驰飞的解决方案是环保、高效和高度可靠的,可大幅减少过量喷涂,节省原材料,并提高均一性、转移效率、均匀性和减少排放。为企业提供围绕功能涂层的全套解决方案及长期技术支持,保证客户涂层稳定量产;针对特殊器械涂层需求,提供涂层定制研发服务;提供各类涂层代工服务。
杭州驰飞是超声镀膜系统开发商和制造商,产品主要应用于燃料电池质子交换膜喷涂、薄膜太阳能电池、钙钛矿、微电子、半导体、 纳米新材料、玻璃镀膜、 生物医疗、纺织品等领域。